By Topic

Extracting Simultaneous and Proportional Neural Control Information for Multiple-DOF Prostheses From the Surface Electromyographic Signal

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ning Jiang ; Dept. of Electr. & Comput. Eng., Univ. of New Brunswick, Fredericton, NB ; Englehart, K.B. ; Parker, P.A.

A novel signal processing algorithm for the surface electromyogram (EMG) is proposed to extract simultaneous and proportional control information for multiple DOFs. The algorithm is based on a generative model for the surface EMG. The model assumes that synergistic muscles share spinal neural drives, which correspond to the intended activations of different DOFs of natural movements and are embedded within the surface EMG. A DOF-wise nonnegative matrix factorization (NMF) is developed to estimate neural control information from the multichannel surface EMG. It is shown, both by simulation and experimental studies, that the proposed algorithm is able to extract the multidimensional control information simultaneously. A direct application of the proposed method would be providing simultaneous and proportional control of multifunction myoelectric prostheses.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:56 ,  Issue: 4 )