Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Laser-Induced Fluorescence and Reflected White Light Imaging for Robot-Assisted MIS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Noonan, D.P. ; Dept. of Biosurgery & Surg. Technol., Inst. of Biomed. Eng., London ; Elson, D.S. ; Mylonas, G.P. ; Darzi, A.
more authors

This paper presents an articulated robotic-controlled device to facilitate large-area in vivo tissue imaging and characterization through the integration of miniaturized reflected white light and fluorescence intensity imaging for minimally invasive surgery (MIS). The device is composed of a long, rigid shaft with a robotically controlled distal tip featuring three degrees of in-plane articulation and one degree of rotational freedom. The constraints imposed by the articulated section, coupled with the small footprint available in MIS devices, require a novel optical configuration to ensure effective target illumination and image acquisition. A tunable coherent supercontinuum laser source is used to provide sequential white light and fluorescence illumination through a multimode fiber (200 mum diameter), and the reflected images are transmitted to an image acquisition system using a 10 000 pixel flexible fiber image guide (590 mum diameter). By using controlled joint actuation to trace overlapping trajectories, the device allows effective imaging of a larger field of view than a traditional dual-mode laparoscope. A first-generation prototype of the device and its initial phantom and ex vivo tissue characterization results are described. The results demonstrate the potential of the device to be used as a new platform for in vivo tissue characterization and navigation for MIS.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:56 ,  Issue: 3 )