By Topic

3-GHz Silicon Photodiodes Integrated in a 0.18- \mu m CMOS Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Berkehan Ciftcioglu ; Dept. of Electr. & Comput. Eng., Univ. of Rochester, Rochester, NY ; Jie Zhang ; Lin Zhang ; John R. Marciante
more authors

A new PIN photodiode (PD) structure with deep n-well (DNW) fabricated in an epitaxial substrate complementary metal-oxide-semiconductor (epi-CMOS) process is presented. The DNW buried inside the epitaxial layer intensifies the electric field deep inside the epi-layer significantly, and helps the electrons generated inside the epi-layer to drift faster to the cathode. Therefore, this new structure reduces the carrier transit time and enhances the PD bandwidth. A PD with an area of 70 times 70 mum2 fabricated in a 0.18-mum epi-CMOS achieves 3-dB bandwidth of 3.1 GHz in the small signal and 2.6 GHz in the large signal, both with a 15-V bias voltage and 850-nm optical illumination. The responsivity is measured 0.14 A/W, corresponding to a quantum efficiency of 20%, at low bias. The responsivity increases to 0.4 A/W or 58% quantum efficiency at 16.2-V bias in the avalanche mode.

Published in:

IEEE Photonics Technology Letters  (Volume:20 ,  Issue: 24 )