By Topic

Controlling Third-Order Nonlinearities by Ion-Implantation Quantum-Well Intermixing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Wagner, S.J. ; Edward S. Rogers Sr. Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON ; Holmes, B.M. ; Younis, U. ; Helmy, Amr S.
more authors

The optical Kerr effect was measured by observing self-phase modulation in GaAs-AlGaAs superlattice-core waveguides modified by ion-implantation quantum-well intermixing. The band-gap energy was shifted by 68 nm for an implantation dose of 0.5times1013 cm-2 and annealing temperature of 775degC. The Kerr effect was suppressed by up to 71% in the transverse-electric polarization after intermixing. A reduced polarization dependence of the self-phase modulation was observed after intermixing.

Published in:

Photonics Technology Letters, IEEE  (Volume:21 ,  Issue: 2 )