Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

A Theoretical Analysis of Vacuum Arc Thruster and Vacuum Arc Ion Thruster Performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Polk, James E. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA ; Sekerak, M.J. ; Ziemer, J.K. ; Schein, J.
more authors

Thrusters that exploit vacuum arc discharges to produce high-velocity plasma jets directly or as sources of plasma that is subsequently accelerated electrostatically have been proposed or are currently under development. Vacuum arc discharges exhibit certain regularities in their behavior that allow the performance of these thrusters to be described by simple semiempirical models. Empirical data on the current density distribution, charge state and velocity of ions created in vacuum arc discharges, and the total cathode mass loss rate are used to develop expressions for the expected thrust and specific impulse as a function of thruster geometry. Thruster electrical efficiency and thrust-to-power ratio are calculated based on measurements of the burning voltage for given thruster operating parameters. Estimates of achievable thruster performance for a wide range of cathode materials are presented. This analysis suggests that thrusters using vacuum arc sources can be operated efficiently with a range of propellant options that gives great flexibility in specific impulse. In addition, the efficiency of plasma production in these devices appears to be largely independent of scale because the metal vapor is ionized within tens of micrometers of the cathode electron emission sites, so this approach is well suited for micropropulsion.

Published in:

Plasma Science, IEEE Transactions on  (Volume:36 ,  Issue: 5 )