By Topic

Measurement of Microwave Frequency Using a Monolithically Integrated Scannable Echelle Diffractive Grating

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Honglei Guo ; Sch. of Inf. Technol. & Eng., Univ. of Ottawa, Ottawa, ON ; Gaozhi Xiao ; Nezih Mrad ; Jianping Yao

A novel approach to the measurement of microwave signal frequency is studied and demonstrated. The approach is based on a monolithically integrated echelle diffractive grating (EDG). The microwave signal is converted to an optical signal of two sidebands using an optical carrier and a Mach-Zehnder modulator. One of the sidebands is then filtered out by a fiber Bragg grating, while the other sideband is characterized by an EDG-based interrogator. Due to the better than 1-pm interrogation resolution of this interrogator, the center wavelength of the sideband tested is capable of being accurately measured. Combining this data with the wavelength of the optical carrier used, the frequency of the microwave signal can be calculated. The results obtained are found to be in good agreement with those of the microwave signals.

Published in:

IEEE Photonics Technology Letters  (Volume:21 ,  Issue: 1 )