By Topic

Simultaneous Localized Feature Selection and Model Detection for Gaussian Mixtures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuanhong Li ; Dept. of Comput. Sci., Wayne State Univ., Detroit, MI ; Ming Dong ; Jing Hua

In this paper, we propose a novel approach of simultaneous localized feature selection and model detection for unsupervised learning. In our approach, local feature saliency, together with other parameters of Gaussian mixtures, are estimated by Bayesian variational learning. Experiments performed on both synthetic and real-world data sets demonstrate that our approach is superior over both global feature selection and subspace clustering methods.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 5 )