By Topic

On Discrete-Time Pursuit-Evasion Games With Sensing Limitations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bopardikar, S.D. ; Dept. of Mech. Eng., Univ. of California, Santa Barbara, CA ; Bullo, F. ; Hespanha, J.P.

In this paper, we address discrete-time pursuit-evasion games in the plane where every player has identical sensing and motion ranges restricted to closed disks of given sensing and stepping radii. A single evader is initially located inside a bounded subset of the environment and does not move until detected. We propose a sweep-pursuit-capture pursuer strategy to capture the evader and apply it to two variants of the game. The first involves a single pursuer and an evader in a bounded convex environment, and the second involves multiple pursuers and an evader in a boundaryless environment. In the first game, we give a sufficient condition on the ratio of sensing to stepping radius of the players that guarantees capture. In the second, we determine the minimum probability of capture, which is a function of a novel pursuer formation and independent of the initial evader location. The sweep and pursuit phases reduce both games to previously studied problems with unlimited range sensing, and capture is achieved using available strategies. We obtain novel upper bounds on the capture time and present simulation studies that address the performance of the strategies under sensing errors, different ratios of sensing to stepping radius, greater evader speed, and a different number of pursuers.

Published in:

Robotics, IEEE Transactions on  (Volume:24 ,  Issue: 6 )