By Topic

A Robustness Approach for Handling Modeling Errors in Parallel-Plate Electrostatic MEMS Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Guchuan Zhu ; Electr. Eng. Dept., Ecole Polytech. de Montreal, Montreal, QC ; Saydy, L. ; Hosseini, M. ; Chianetta, J.-F.
more authors

This paper addresses the control of electrostatic parallel-plate microactuators in the presence of such modeling errors as unmodeled fringing field effect and deformations. In general, accurate descriptions of these phenomena often lead to very complicated mathematical models, while ignoring them may result in significant performance degradation. In this paper, it is shown by finite-element-method-based simulations that the capacitance due to fringing field effect and deformations can be compensated by introducing a variable serial capacitor. When a suitable robust controller is used, the full knowledge of the introduced serial capacitor is not required, but merely its boundaries of variation. Based on this model, a robust control scheme is derived using the theory of input-to-state stability combined with backstepping state feedback design. Since the full state measurement may not be available under practical operational conditions, an output feedback control scheme is developed. The stability and performance of the system using the proposed control schemes are demonstrated through both stability analysis and numerical simulation. The present approach allows the loosening of the stringent requirements on modeling accuracy without compromising the performance of control systems.

Published in:

Microelectromechanical Systems, Journal of  (Volume:17 ,  Issue: 6 )