By Topic

Reconfigurable Dispersion Equalizer Based on Phase-Apodized Fiber Bragg Gratings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Doucet, S. ; Centre d''Opt., Photonique et Laser, Univ. Laval, Quebec City, QC ; LaRochelle, S. ; Morin, M.

We present a novel dispersion equalizer design for the compensation of chromatic dispersion and chromatic dispersion slope in WDM systems. The device is based on a cascade of complex quasi-periodic chirped fiber Bragg gratings. We show that the use of a low chirp results in the distribution of the resonating cavities along the optical fiber length, which allows reconfiguration of the spectral characteristics by the application of a temperature profile. This paper exposes in detail the numerical techniques used in the optimization of the fiber Bragg grating filters taking into account fabrication imperfections. We present a specific design for a 32-channel dispersion equalizer for 10 Gbit/s and a 50-GHz channel spacing. We examine the spectral characterization of a device fabricated using a phase-apodized mask for various settings of the chromatic dispersion profile. We demonstrate a tuning range of plusmn800 ps/nm over a bandwidth of 30 GHz. On average, the standard deviation of the phase ripple was below 0.1 rad. Finally, we evaluate the performance of this device by bit error rate measurements.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 16 )