By Topic

Jason Smiles: Incremental BDI MAS Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alejandro Guerra-Hernández ; Dept. de Intel. Artificial, Univ. Veracruzana, Xalapa ; Gustavo Ortiz-Hernández ; Wulfrano Arturo Luna-Ramírez

This work deals with the problem of intentional learning in a multi-agent system (MAS). Smile (sound multi-agent incremental learning), a collaborative learning protocol which shows interesting results in the distributed learning of well known complex boolean formulae, is adopted here by a MAS of BDI agents to update their practical reasons while keeping MAS-consistency. An incremental algorithm for first-order induction of logical decision trees enables the BDI agents to adopt Smile, reducing the amount of communicated learning examples when compared to our previous non-incremental approaches to intentional learning. The protocol is formalized extending the operational semantics of AgentSpeak(L), and implemented in Jason, its well known Java-based extended interpreter.

Published in:

Artificial Intelligence - Special Session, 2007. MICAI 2007. Sixth Mexican International Conference on

Date of Conference:

4-10 Nov. 2007