Cart (Loading....) | Create Account
Close category search window
 

Sensorless Control of Linear Tubular Permanent Magnet Synchronous Motors Using Pulsating Signal Injection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cupertino, F. ; Dipt. di Elettrotec. ed Elettron., Politec. di Bari, Bari ; Giangrande, P. ; Scaringi, M. ; Stasi, S.
more authors

Direct drives with linear permanent magnet synchronous motors (LPMSMs) are recently attracting the attention of both industry and academia. On the one hand such electric drives permit to reduce size and increase reliability thanks to the lack of mechanical reduction and transmission devices. On the other hand precision positioning requires linear position sensing with a measuring range (and size) equal to the motor allowed travel. It is clear the advantage of sensorless control in such applications in terms of reduced hardware complexity, cost and maintenance requirements. This paper presents a position sensorless control scheme based on high frequency signal injection. A pulsating voltage is superimposed to the control voltage along the estimated d-axis direction. Then a novel demodulation procedure implemented in stationary coordinates is proposed to extract position information. The procedure has a reduced computational cost if compared to the alternatives already proposed in the related literature and requires no tuning effort. A demonstration of the algorithm convergence valid in transient conditions, and a novel method to measure the high frequency motor impedance are also presented. The proposed approach is well suited for motors with reduced magnetic saliency such as tubular LPMSM. The above considerations are validated by extensive experiments.

Published in:

Industry Applications Society Annual Meeting, 2008. IAS '08. IEEE

Date of Conference:

5-9 Oct. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.