Cart (Loading....) | Create Account
Close category search window

Single-level integrity and confidentiality protection for distributed shared memory multiprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rogers, B. ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC ; Chenyu Yan ; Chhabra, S. ; Prvulovic, M.
more authors

Multiprocessor computer systems are currently widely used in commercial settings to run critical applications. These applications often operate on sensitive data such as customer records, credit card numbers, and financial data. As a result, these systems are the frequent targets of attacks because of the potentially significant gain an attacker could obtain from stealing or tampering with such data. This provides strong motivation to protect the confidentiality and integrity of data in commercial multiprocessor systems through architectural support. Architectural support is able to protect against software-based attacks, and is necessary to protect against hardware-based attacks. In this work, we propose architectural mechanisms to ensure data confidentiality and integrity in Distributed Shared Memory multiprocessors which utilize a point-to-point based interconnection network. Our approach improves upon previous work in this area, mainly in the fact that our approach reduces performance overheads by significantly reducing the amount of cryptographic operations required. Evaluation results show that our approach can protect data confidentiality and integrity in a 16-processor DSM system with an average overhead of 1.6% and a maximum of only 7% across all SPLASH-2 applications.

Published in:

High Performance Computer Architecture, 2008. HPCA 2008. IEEE 14th International Symposium on

Date of Conference:

16-20 Feb. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.