Cart (Loading....) | Create Account
Close category search window

Human pose modelling and body tracking from monocular video sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lim Siew Hooi ; Sch. of Eng. & Inf. Technol., Univ. Malaysia Sabah, Kota Kinabalu ; Sainarayanan, G. ; Liau Chung Fan

This paper proposes a computer vision-based approach to automatically detect human body parts and estimate the human body poses efficiently from a monocular video sequence. Human body parts detection is performed using colour, contours and silhouettes cues. It determines the 2D spatial locations of joints of a human body without any special markers on the body. The input image is segmented using silhouette extraction function to obtain a silhouette human figure. A parametric skin distribution modelling method is then utilized to detect the face and limbs of a person. Hue-Saturation-Value (HSV) colour space is chosen for this application. Radon transform is used to get more accurate orientation of the upper arms when they are inside the body perimeter. Various physical and motion constraints regarding the human body is then used to construct the upper body configuration. Our algorithm can estimate poses for the person wearing short sleeve and long sleeve shirt. It could estimate the human poses even under illumination changes, self-occlusion occurrence, and distance variations. Then, seventeen body poses are considered for classification. Eight features are extracted from each pose. Feed-forward neural network is used to classify the defined human body poses.

Published in:

Intelligent and Advanced Systems, 2007. ICIAS 2007. International Conference on

Date of Conference:

25-28 Nov. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.