By Topic

Relation-Aware Volume Exploration Pipeline

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ming-Yuen Chan ; The Hong Kong University of Science and Technolgoy ; Huamin Qu ; Ka-Kei Chung ; Wai-Ho Mak
more authors

Volume exploration is an important issue in scientific visualization. Research on volume exploration has been focused on revealing hidden structures in volumetric data. While the information of individual structures or features is useful in practice, spatial relations between structures are also important in many applications and can provide further insights into the data. In this paper, we systematically study the extraction, representation,exploration, and visualization of spatial relations in volumetric data and propose a novel relation-aware visualization pipeline for volume exploration. In our pipeline, various relations in the volume are first defined and measured using region connection calculus (RCC) and then represented using a graph interface called relation graph. With RCC and the relation graph, relation query and interactive exploration can be conducted in a comprehensive and intuitive way. The visualization process is further assisted with relation-revealing viewpoint selection and color and opacity enhancement. We also introduce a quality assessment scheme which evaluates the perception of spatial relations in the rendered images. Experiments on various datasets demonstrate the practical use of our system in exploratory visualization.

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:14 ,  Issue: 6 )