Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Interactive Volume Exploration for Feature Detection and Quantification in Industrial CT Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

This paper presents a novel method for interactive exploration of industrial CT volumes such as cast metal parts, with the goal of interactively detecting, classifying, and quantifying features using a visualization-driven approach. The standard approach for defect detection builds on region growing, which requires manually tuning parameters such as target ranges for density and size, variance, as well as the specification of seed points. If the results are not satisfactory, region growing must be performed again with different parameters. In contrast, our method allows interactive exploration of the parameter space, completely separated from region growing in an unattended pre-processing stage. The pre-computed feature volume tracks a feature size curve for each voxel over time, which is identified with the main region growing parameter such as variance. A novel 3D transfer function domain over (density, feature.size, time) allows for interactive exploration of feature classes. Features and feature size curves can also be explored individually, which helps with transfer function specification and allows coloring individual features and disabling features resulting from CT artifacts. Based on the classification obtained through exploration, the classified features can be quantified immediately.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:14 ,  Issue: 6 )