Cart (Loading....) | Create Account
Close category search window
 

Surface Extraction from Multi-field Particle Volume Data Using Multi-dimensional Cluster Visualization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Linsen, L. ; Sch. of Eng. & Sci., Jacobs Univ., Bremen ; Van Long, T. ; Rosenthal, P. ; Rosswog, S.

Data sets resulting from physical simulations typically contain a multitude of physical variables. It is, therefore, desirable that visualization methods take into account the entire multi-field volume data rather than concentrating on one variable. We present a visualization approach based on surface extraction from multi-field particle volume data. The surfaces segment the data with respect to the underlying multi-variate function. Decisions on segmentation properties are based on the analysis of the multi-dimensional feature space. The feature space exploration is performed by an automated multi-dimensional hierarchical clustering method, whose resulting density clusters are shown in the form of density level sets in a 3D star coordinate layout. In the star coordinate layout, the user can select clusters of interest. A selected cluster in feature space corresponds to a segmenting surface in object space. Based on the segmentation property induced by the cluster membership, we extract a surface from the volume data. Our driving applications are smoothed particle hydrodynamics (SPH) simulations, where each particle carries multiple properties. The data sets are given in the form of unstructured point-based volume data. We directly extract our surfaces from such data without prior resampling or grid generation. The surface extraction computes individual points on the surface, which is supported by an efficient neighborhood computation. The extracted surface points are rendered using point-based rendering operations. Our approach combines methods in scientific visualization for object-space operations with methods in information visualization for feature-space operations.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:14 ,  Issue: 6 )

Date of Publication:

Nov.-Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.