By Topic

Extensions of Parallel Coordinates for Interactive Exploration of Large Multi-Timepoint Data Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Blaas, J. ; Data Visualization Group, Delft Univ. of Technol., Delft ; Botha, C.P. ; Post, F.H.

Parallel coordinate plots (PCPs) are commonly used in information visualization to provide insight into multi-variate data. These plots help to spot correlations between variables. PCPs have been successfully applied to unstructured datasets up to a few millions of points. In this paper, we present techniques to enhance the usability of PCPs for the exploration of large, multi-timepoint volumetric data sets, containing tens of millions of points per timestep. The main difficulties that arise when applying PCPs to large numbers of data points are visual clutter and slow performance, making interactive exploration infeasible. Moreover, the spatial context of the volumetric data is usually lost. We describe techniques for preprocessing using data quantization and compression, and for fast GPU-based rendering of PCPs using joint density distributions for each pair of consecutive variables, resulting in a smooth, continuous visualization. Also, fast brushing techniques are proposed for interactive data selection in multiple linked views, including a 3D spatial volume view. These techniques have been successfully applied to three large data sets: Hurricane Isabel (Vis'04 contest), the ionization front instability data set (Vis'08 design contest), and data from a large-eddy simulation of cumulus clouds. With these data, we show how PCPs can be extended to successfully visualize and interactively explore multi-timepoint volumetric datasets with an order of magnitude more data points.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:14 ,  Issue: 6 )