By Topic

Content-Based Image Retrieval Using Multiresolution Color and Texture Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Young Deok Chun ; Mobile Commun. Div., Samsung Electron. Co. Ltd., Gumi ; Nam Chul Kim ; Ick Hoon Jang

In this paper, we propose a content-based image retrieval method based on an efficient combination of multiresolution color and texture features. As its color features, color autocorrelo- grams of the hue and saturation component images in HSV color space are used. As its texture features, BDIP and BVLC moments of the value component image are adopted. The color and texture features are extracted in multiresolution wavelet domain and combined. The dimension of the combined feature vector is determined at a point where the retrieval accuracy becomes saturated. Experimental results show that the proposed method yields higher retrieval accuracy than some conventional methods even though its feature vector dimension is not higher than those of the latter for six test DBs. Especially, it demonstrates more excellent retrieval accuracy for queries and target images of various resolutions. In addition, the proposed method almost always shows performance gain in precision versus recall and in ANMRR over the other methods.

Published in:

IEEE Transactions on Multimedia  (Volume:10 ,  Issue: 6 )