By Topic

A novel scheme for protecting receiver's location privacy in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ying Jian ; Dept. of Comput. & Inf. Sci. & Eng., Univ. of Florida, Gainesville, FL ; Shigang Chen ; Zhan Zhang ; Liang Zhang

Due to the open nature of a sensor network, it is relatively easy for an adversary to eavesdrop and trace packet movement in the network in order to capture the receiver physically. After studying the adversary's behavior patterns, we present countermeasures to this problem. We propose a locationprivacy routing protocol (LPR) that is easy to implement and provides path diversity. Combining with fake packet injection, LPR is able to minimize the traffic direction information that an adversary can retrieve from eavesdropping. By making the directions of both incoming and outgoing traffic at a sensor node uniformly distributed, the new defense system makes it very hard for an adversary to perform analysis on locally gathered information and infer the direction to which the receiver locates. We evaluate our defense system based on three criteria: delivery time, privacy protection strength, and energy cost. The simulation results show that LPR with fake packet injection is capable of providing strong protection for the receiveriquests location privacy. Under similar energy cost, the safe time of the receiver provided by LPR is much longer than other methods, including Phantom routing [1] and DEFP [2]. The performance of our system can be tuned through a few system parameters that determine the tradeoff between energy cost and the strength of location-privacy protection.

Published in:

IEEE Transactions on Wireless Communications  (Volume:7 ,  Issue: 10 )