Cart (Loading....) | Create Account
Close category search window
 

Exact BER analysis for M-QAM modulation with transmit beamforming under channel prediction errors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Martos-Naya, E. ; Dept. de Ingeniera de Comun., Univ. de Malaga, Malaga, Spain ; Paris, J.F. ; Fernández-Plazaola, U. ; Goldsmith, A.J.

Significant throughput improvements can be obtained in multiple-input multiple-output (MIMO) fading channels by merging beamforming at the transmitter and maximal ratio combining (MRC) at the receiver. In general, accurate channel state information (CSI) is required to achieve these performance gains. In this paper, we analyze the impact of channel prediction error on the bit error rate (BER) of combined beamforming and MRC in slow Rayleigh fading channels. Exact closed-form BER expressions are obtained in terms of elementary functions. Numerical results show that imperfect CSI causes little BER degradation using channel prediction of moderate complexity.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:7 ,  Issue: 10 )

Date of Publication:

October 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.