By Topic

Efficient In-Vehicle Delayed Data Authentication Based on Compound Message Authentication Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nilsson, D.K. ; Dept. of Comput. Sci. & Eng., Chalmers Univ. of Technol., Gothenburg ; Larson, U.E. ; Jonsson, E.

Modern vehicles contain an in-vehicle network consisting of a number of electronic control units (ECUs). These ECUs are responsible for most of the functionality in the vehicle, including vehicle control and maneuverability. To date, no security features exist in this network since it has been isolated. However, an upcoming trend among automobile manufacturers is to establish a wireless connection to the vehicle to provide remote diagnostics and software updates. As a consequence, the in-vehicle network is exposed to external communication, and a potential entry point for attackers is introduced. Messages sent on the in-vehicle network lack integrity protection and data authentication; thus, the network is vulnerable to injection and modification attacks. Due to the real-time constraints and the limited resources in the ECUs, achieving data authentication is a challenge. In this paper, we propose an efficient delayed data authentication using compound message authentication codes. A message authentication code is calculated on a compound of successive messages and sent together with the subsequent messages, resulting in a delayed authentication. This data authentication could be used to detect and possibly recover from injection and modification attacks in the in-vehicle network.

Published in:

Vehicular Technology Conference, 2008. VTC 2008-Fall. IEEE 68th

Date of Conference:

21-24 Sept. 2008