By Topic

Pilot-Based Compensation of Frequency-Selective I/Q Imbalances in Direct-Conversion OFDM Transmitters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yaning Zou ; Dept. of Commun. Eng., Tampere Univ. of Technol., Tampere ; Valkama, M. ; Renfors, M.

This paper presents a pilot-based compensation algorithm for mitigation of frequency-selective I/Q imbalances in direct-conversion OFDM transmitters. By deploying a feedback loop from RF to baseband, together with a properly-designed pilot signal structure, the I/Q imbalance properties of the transmitter are efficiently estimated in a subcarrier-wise manner. Based on the obtained I/Q imbalance knowledge, the imbalance effects on the actual transmit waveform are then mitigated by baseband pre-distortion acting on the mirror-subcarrier signals. The compensation performance of the proposed structure is analyzed using extensive computer simulations, indicating that very high image rejection ratios can be achieved in practical system set-ups with reasonable pilot signal lengths.

Published in:

Vehicular Technology Conference, 2008. VTC 2008-Fall. IEEE 68th

Date of Conference:

21-24 Sept. 2008