Cart (Loading....) | Create Account
Close category search window

Predicting the Parts Weight in Plastic Injection Molding Using Least Squares Support Vector Regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaoli Li ; Inst. of Electr. Eng., Yanshan Univ., Qinhuangdao ; Bin Hu ; Ruxu Du

To achieve the desired quality in plastic injection molding, advanced monitoring techniques are often recommended in the workshop. Unfortunately, the signal in plastic injection modeling process such as nozzle pressure that is relevant to part quality is not easy to obtain because of the cost of sensors. The sensor-based modeling idea is therefore adopted. In this paper, a new method for predicting the parts weight in plastic injection molding using least squares support vector regression (LS-SVR) is proposed, which is composed of two steps. The first step is to estimate the nozzle pressure with the hydraulic system pressure using an LS-SVR model. The second step is to predict product weight using the estimated nozzle pressure, which is done using another LS-SVR model. The experimental results show that the new method is very effective.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:38 ,  Issue: 6 )

Date of Publication:

Nov. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.