By Topic

Quaternion-Based Transformation for Extraction of Image-Generating Doppler for ISAR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abdul Gaffar, M.Y. ; Council for Sci. & Ind. Res., Radar & Electron. Warefare, Pretoria ; Nel, W.A.J. ; Inggs, M.R.

Inverse synthetic aperture radar (ISAR) is an imaging technique that is dependent on an object's rotational motion over a coherent processing interval. Maritime vessels and aircraft possess 3-D rotational motion, whereas it is only their ISAR contributing motion that is useful to the ISAR imaging process; the contributing motion consists of the Doppler generating axis and the effective angle of rotation. This letter presents a quaternion-based transformation that converts measured attitude and position data into an object's Doppler generating axis and effective angular rotation rate. This transformation is significant since it isolates the component of the motion that directly influences the ISAR image. It provides an alternative approach that can be used to understand the causes of blurring of most ISAR images of sea vessels as well to identify good imaging intervals for applications such as cooperative ISAR for radar cross section measurement purposes.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:5 ,  Issue: 4 )