By Topic

Multiple-Component Scattering Model for Polarimetric SAR Image Decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lamei Zhang ; Dept. of Inf. Eng., Harbin Inst. of Technol., Harbin ; Bin Zou ; Hongjun Cai ; Ye Zhang

A multiple-component scattering model (MCSM) is proposed to decompose polarimetric synthetic aperture radar (PolSAR) images. The MCSM extends a three-component scattering model, which describes single-bounce, double-bounce, volume, helix, and wire scattering as elementary scattering mechanisms in the analysis of PolSAR images. It can be found that double-bounce, helix, and wire scattering are predominant in urban areas. These elementary scattering mechanisms correspond to the asymmetric reflection condition that the copolar and cross-polar correlations are not close to zero. The MCSM is demonstrated with a German Aerospace Center (DLR) Experimental Synthetic Aperture Radar (ESAR) L-band full-polarized image of the Oberpfaffenhofen Test Site Area (DE), Germany, which was obtained on September 30, 2000. The result of this decomposition confirmed that the proposed model is effective for analysis of buildings in urban areas.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:5 ,  Issue: 4 )