By Topic

Unsupervised classification of hyperspectral-image data using fuzzy approaches that spatially exploit membership relations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bilgin, G. ; Dept. of Electron. & Telecommun. Eng., Yildiz Tech. Univ., Istanbul ; Erturk, S. ; Yildirim, T.

This letter presents unsupervised hyperspectral-image classification based on fuzzy-clustering algorithms that spatially exploit membership relations. Not only is the conventional fuzzy c-means approach used to demonstrate the advantage of using membership relations but also Gustafson-Kessel clustering, which uses an adaptive distance norm, is, for the first time, used for the segmentation of hyperspectral images. A novel approach to include spatial information in the segmentation process is achieved by making use of spatial relations of fuzzy-membership functions among neighbor pixels. Two- and three-dimensional Gaussian filtering of fuzzy-membership degrees is utilized for this purpose. A novel phase-correlation-based similarity measure is used to further enhance the performance of the proposed approach by taking spatial relations into account for pixels with similar spectral characteristics only. It is shown that the proposed approach provides superior clustering performance for hyperspectral images.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:5 ,  Issue: 4 )