By Topic

Deriving Marine-Boundary-Layer Lapse Rate from Collocated CALIPSO, MODIS, and AMSR-E Data to Study Global Low-Cloud Height Statistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

Global cloud-top height statistics of marine-boundary-layer clouds are derived from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Level 2 aerosol and cloud layer products. The boundary-layer lapse rate in the northeast region of the Pacific Ocean is investigated using sea surface temperature (SST) data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), cloud-top temperature data from the Moderate Resolution Imaging Spectroradiometer (MODIS), and cloud-top height data from CALIPSO. Based on the lapse rate derived from the combined CALIPSO/MODIS/AMSR-E measurements, cloud-top heights in regions within CALIPSO tracks are derived from AMSR SST and MODIS cloud temperature to test the validity of this approach. For homogeneous low-level clouds, the results agree with the cloud-top height from the collocated CALIPSO cloud-top height measurements. These results suggest that the database of derived lapse rates from the combined measurements can be applied to study cloud-top height climate statistics using the MODIS and AMSR data when CALIPSO observations are not available.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:5 ,  Issue: 4 )