Cart (Loading....) | Create Account
Close category search window
 

Rough-granular approach for impulse fault classification of transformers using cross-wavelet transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dey, D. ; Dept. of Electr. Eng., Jadavpur Univ., Kolkata ; Chatterjee, B. ; Chakravorti, S. ; Munshi, S.

A novel approach based on information granulation using Rough sets for impulse fault identification of transformers has been proposed. It is found that the location and type of fault within a transformer winding can be classified efficiently by the features extracted from cross-wavelet spectra of current waveforms, obtained from impulse test. Results show that the proposed methodology can localize the fault within 5% of the winding length with a high degree of accuracy. The basic concepts of feature extraction using cross-wavelet transform and the method of classification of those features by rough-granular method are also explained.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:15 ,  Issue: 5 )

Date of Publication:

October 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.