By Topic

An Efficient Unknown Blocking Scheme for Low Control Data Volume and High Observability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seongmoon Wang ; NEC Labs. America, Inc., Princeton, NJ ; Wenlong Wei

This paper presents an efficient method to block unknowns for temporal compactors. The proposed blocking logic can reduce data volume required to control the blocking logic and increase the number of scan cells that are observed by temporal compactors. Control patterns, which specify values required at the control signals of the blocking logic, are compressed by linear feedback shift register reseeding. In this paper, the blocking logic gates for some scan chains that do not capture unknowns are bypassed. Since all scan cells in these scan chains can be observed without specifying the corresponding bits in control patterns, more scan cells are observed while a smaller number of bits are required to be specified. The seed size is further reduced by reducing the numbers of specified bits in the densely specified control patterns. The proposed method can always achieve the same fault coverage that can be achieved by directly observing scan chains without any output compaction. Experiments with large industrial designs clearly demonstrate that the proposed method is scalable to large circuits. Hardware overhead for the proposed unknown blocking scheme is very low.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:27 ,  Issue: 11 )