By Topic

Automated Scan Chain Division for Reducing Shift and Capture Power During Broadside At-Speed Test

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ko, H.F. ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, ON ; Nicolici, N.

Scan chain division has been successfully used to control shift power by enabling mutually exclusive flip-flops at different times during the scan cycle. However, to control capture power without losing transition fault coverage during at-speed scan test, the existing automatic test pattern generation (ATPG) flows need to be modified. In this paper, we present a novel scan chain division algorithm that analyzes the signal dependencies and creates the circuit partitions such that both shift and capture power can be reduced when using the existing ATPG flows. This novel algorithm has been designed for the broadside test application strategy, and a technique for employing partial scan when dividing the scan chains is also proposed.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:27 ,  Issue: 11 )