Cart (Loading....) | Create Account
Close category search window
 

Energy and Performance Optimization of Demand Paging With OneNAND Flash

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yongsoo Joo ; Dept. of Electr. Eng. & Comput. Sci., Seoul Nat. Univ., Seoul ; Yongseok Choi ; Jaehyun Park ; Chanik Park
more authors

New fusion memory devices consisting of multiple heterogeneous memory components in a single die or package offer efficient ways to optimize embedded systems in terms of energy, performance, and cost. Samsung Electronics recently announced the OneNAND fusion memory, in which a NAND flash array is integrated with dual SRAM buffers to provide a nor-type I/O interface. OneNAND has the low cost and large capacity of a NAND flash but also permits eXecution-in-Place (XIP) like a nor flash. The deployment of such devices requires careful system-level resource management because of their impact on energy consumption and performance, and existing memory optimization techniques, such as the demand paging used with NAND flash, may no longer be appropriate for systems with a fusion memory. We introduce a new online demand paging scheme that fully exploits the XIP capability of OneNAND flash by classifying pages as load preferred (residing in the on-chip SRAM) and XIP preferred (accessed directly from the OneNAND flash and discarded after use). This achieves, on average, a 26% reduction in energy consumption and a 19% increase in performance, compared with conventional NAND flash demand paging.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:27 ,  Issue: 11 )

Date of Publication:

Nov. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.