Cart (Loading....) | Create Account
Close category search window
 

Characterizing an Image Intensifier in a Full-Field Range Imaging System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Payne, A.D. ; Univ. of Waikato, Hamilton ; Dorrington, A.A. ; Cree, M.J. ; Carnegie, D.A.

We are developing a high precision full-field range imaging system. An integral component in this system is an image intensifier, which is modulated at frequencies up to 100 MHz. The range measurement precision is dictated by the image intensifier performance, in particular, the achievable modulation frequency, modulation depth, and waveform shape. By characterizing the image intensifier response, undesirable effects can be observed and quantified with regards to the consequence on the resulting range measurements, and the optimal operating conditions can be selected to minimize these disturbances. The characterization process utilizes a pulsed laser source to temporally probe the gain of the image intensifier. The laser is pulsed at a repetition rate slightly different to the image intensifier modulation frequency, producing a continuous phase shift between the two signals. A charge coupled device samples the image intensifier output, capturing the response over a complete modulation period. Deficiencies in our measured response are clearly identifiable and simple modifications to the configuration of our electrical driver circuit improve the modulation performance.

Published in:

Sensors Journal, IEEE  (Volume:8 ,  Issue: 11 )

Date of Publication:

Nov. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.