By Topic

Algebraic Decoding of the (89, 45, 17) Quadratic Residue Code

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Trieu-Kien Truong ; Dept. of Inf. Eng., I-Shou Univ., Kaohsiung ; Pei-Yu Shih ; Wen-Ku Su ; Chong-Dao Lee
more authors

Recently, an algebraic decoding algorithm suggested by Truong (2005) for some quadratic residue codes with irreducible generating polynomials has been designed that uses the inverse-free Berlekamp-Massey (BM) algorithm to determine the error-locator polynomial. In this paper, based on the ideas of the algorithm mentioned above, an algebraic decoder for the (89, 45, 17) binary quadratic residue code, the last one not decoded yet of length less than 100 , is proposed. It was also verified theoretically for all error patterns within the error-correcting capacity of the code. Moreover, the verification method developed in this paper can be extended for all cyclic codes without checking all error patterns by computer simulations.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 11 )