By Topic

Design of Spherical Lattice Space–Time Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Prasad, N. ; NEC Labs. America, Princeton, NJ ; Berenguer, I. ; Xiaodong Wang

In this paper, we propose a systematic procedure for designing spherical lattice (space-time) codes. By employing stochastic optimization techniques we design lattice codes which are well matched to the fading statistics as well as to the decoder used at the receiver. The decoders we consider here include the optimal albeit of highest decoding complexity maximum-likelihood (ML) decoder, the suboptimal lattice decoders, as well as the suboptimal lattice-reduction-aided (LRA) decoders having the lowest decoding complexity. For each decoder, our design methodology can be tailored to obtain low error-rate lattice codes for arbitrary fading statistics and signal-to-noise ratios (SNRs) of interest. Further, we obtain fundamental lower bounds on the error probabilities yielded by lattice and LRA decoders and characterize their asymptotic behavior.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 11 )