By Topic

KUPS: Knowledge-based ubiquitous and persistent sensor networks for threat assessment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qilian Liang ; University of Texas at Arlington ; Xiuzhen Cheng

We propose a knowledge-based ubiquitous and persistent sensor network (KUPS) for threat assessment, in which "sensor" is a broad characterization. It refers to diverse data or information from ubiquitous and persistent sensor sources such as organic sensors and human intelligence sensors. Our KUPS for threat assessment consists of two major steps: situation awareness using fuzzy logic systems (FLSs) and threat parameter estimation using radar sensor networks (RSNs). Our FLSs combine the linguistic knowledge from different intelligent sensors, and our proposed maximum-likelihood (ML) estimation algorithm performs target radar cross section (RCS) parameter estimation. We also show that our ML estimator is unbiased and the variance of parameter estimation matches the Cramer-Rao lower bound (CRLB) if the radar pulses follow the Swerling II model. Simulations further validate our theoretical results.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:44 ,  Issue: 3 )