By Topic

Target detection and parameter estimation for MIMO radar systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Luzhou Xu ; Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL ; Jian Li ; Stoica, Petre

We investigate several target detection and parameter estimation techniques for a multiple-input multiple-output (MIMO) radar system. By transmitting independent waveforms via different antennas, the echoes due to targets at different locations are linearly independent of each other, which allows the direct application of many data-dependent beamforming techniques to achieve high resolution and excellent interference rejection capability. In the absence of array steering vector errors, we discuss the application of several existing data-dependent beamforming algorithms including Capon, APES (amplitude and phase estimation) and CAPES (combined Capon and APES), and then propose an alternative estimation procedure, referred to as the combined Capon and approximate maximum likelihood (CAML) method. Via several numerical examples, we show that the proposed CAML method can provide excellent estimation accuracy of both target locations and target amplitudes. In the presence of array steering vector errors, we apply the robust Capon beamformer (RCB) and doubly constrained robust Capon beamformer (DCRCB) approaches to the MIMO radar system to achieve accurate parameter estimation and superior interference and jamming suppression performance.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:44 ,  Issue: 3 )