By Topic

Exploiting Self-Reported Social Networks for Routing in Ubiquitous Computing Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Greg Bigwood ; Sch. of Comput. Sci., Univ. of St. Andrews, St. Andrews ; Devan Rehunathan ; Martin Bateman ; Tristan Henderson
more authors

Mobile, delay-tolerant, ad hoc and pocket-switched networks may form an important part of future ubiquitous computing environments. Understanding how to efficiently and effectively route information through such networks is an important research challenge, and much recent work has looked at detecting communities and cliques to determine forwarding paths. Such detected communities, however, may miss important aspects. For instance, a user may have strong social ties to another user that they seldom encounter; a detected social network may omit this tie and so produce sub-optimal forwarding paths. Moreover, the delay in detecting communities may slow the bootstrapping of a new delay-tolerant network. This paper explores the use of self-reported social networks for routing in mobile networks in comparison with detected social networks discovered through encounters. Using encounter records from a group of participants carrying sensor motes, we generate detected social networks from these records. We use these networks for routing, and compare these to the social networks which the users have self-reported on a popular social networking website. Using techniques from social network analysis, we find that the two social networks are different. These differences, however, do not lead to a significant impact on delivery ratio, while the self-reported social network leads to a significantly lower cost.

Published in:

2008 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications

Date of Conference:

12-14 Oct. 2008