By Topic

Solving large complex problems using a higher-order basis: parallel in-core and out-of-core integral-equation solvers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yu Zhang ; Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY ; Taylor, M. ; Sarkar, T. ; Moon, H.
more authors

The future of computational electromagnetics is changing drastically with the new generation of computer chips, which are multi-cored instead of single-cored. Previously, advancements in chip technology meant an increase in clock speed, which was typically a benefit that computational code users could enjoy. This is no longer the case. In the new roadmaps for chip manufacturers, speed has been sacrificed for improved power consumption, and the direction is multi-core processors. The burden now falls on the software programmer to revamp existing codes and add new functionality to enable computational codes to run efficiently on this new generation of multi-core processors. In this paper, a new roadmap for computational code designers is provided, demonstrating how to navigate along with the chip designers through the multi-core advancements in chip design. A new parallel code, using the method of moments (MoM) and higher-order functions for expansion and testing, and executed on a range of computer platforms, will illustrate this roadmap. The advantage of a higher-order basis over a subdomain basis is a reduction in the number of unknowns. This means that with the same computer resources, a larger problem can be solved using higher-order basis than using a subdomain basis. The matrix filling for MoM with subdomain basis must be programmed with multiple loops over the edges of the patches to account for the interactions. However, higher- order basis functions, such as polynomials, can be calculated more efficiently with fewer integrations, at least for the serial code. In terms of parallel integral-equation solvers, the differences between these categories of basis functions must be understood and accommodated.

Published in:

Antennas and Propagation Magazine, IEEE  (Volume:50 ,  Issue: 4 )