By Topic

Improved Delay-Dependent Globally Asymptotic Stability Criteria for Neural Networks With a Constant Delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hanyong Shao ; Sch. of Electr. & Inf. Autom., Qufu Normal Univ., Rizhao

This paper considers the stability analysis problem for neural networks with a constant delay. Based on the dividing of the delay, a new Lyapunov functional is constructed, and a novel delay-dependent stability criterion is derived to guarantee the globally asymptotic stability of the neural network. It is established theoretically that the criterion is less conservative than recently reported ones. Expressed in terms of linear matrix inequalities (LMIs), the stability condition can be checked using the numerically efficient Matlab LMI control toolbox. An example is provided to demonstrate the effectiveness and the reduced conservatism of the analysis result.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:55 ,  Issue: 10 )