Cart (Loading....) | Create Account
Close category search window
 

Bidirectional Texture Function Modeling: A State of the Art Survey

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Filip, J. ; Pattern Recognition Dept., Inst. of Inf. Theor. & Autom. of the AS CR, Prague, Czech Republic ; Haindl, M.

An ever-growing number of real-world computer vision applications require classification, segmentation, retrieval, or realistic rendering of genuine materials. However, the appearance of real materials dramatically changes with illumination and viewing variations. Thus, the only reliable representation of material visual properties requires capturing of its reflectance in as wide range of light and camera position combinations as possible. This is a principle of the recent most advanced texture representation, the bidirectional texture function (BTF). Multispectral BTF is a seven-dimensional function that depends on view and illumination directions as well as on planar texture coordinates. BTF is typically obtained by measurement of thousands of images covering many combinations of illumination and viewing angles. However, the large size of such measurements has prohibited their practical exploitation in any sensible application until recently. During the last few years, the first BTF measurement, compression, modeling, and rendering methods have emerged. In this paper, we categorize, critically survey, and psychophysically compare such approaches, which were published in this newly arising and important computer vision and graphics area.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 11 )

Date of Publication:

Nov. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.