By Topic

Patch Alignment for Dimensionality Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tianhao Zhang ; Shanghai Jiao Tong University, Shanghai ; Dacheng Tao ; Xuelong Li ; Jie Yang

Spectral analysis-based dimensionality reduction algorithms are important and have been popularly applied in data mining and computer vision applications. To date many algorithms have been developed, e.g., principal component analysis, locally linear embedding, Laplacian eigenmaps, and local tangent space alignment. All of these algorithms have been designed intuitively and pragmatically, i.e., on the basis of the experience and knowledge of experts for their own purposes. Therefore, it will be more informative to provide a systematic framework for understanding the common properties and intrinsic difference in different algorithms. In this paper, we propose such a framework, named "patch alignment,rdquo which consists of two stages: part optimization and whole alignment. The framework reveals that (1) algorithms are intrinsically different in the patch optimization stage and (2) all algorithms share an almost identical whole alignment stage. As an application of this framework, we develop a new dimensionality reduction algorithm, termed discriminative locality alignment (DLA), by imposing discriminative information in the part optimization stage. DLA can (1) attack the distribution nonlinearity of measurements; (2) preserve the discriminative ability; and (3) avoid the small-sample-size problem. Thorough empirical studies demonstrate the effectiveness of DLA compared with representative dimensionality reduction algorithms.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:21 ,  Issue: 9 )