Cart (Loading....) | Create Account
Close category search window
 

Patch Alignment for Dimensionality Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tianhao Zhang ; Inst. of Image Process. & Pattern Recognition, Shanghai Jiao Tong Univ., Shanghai, China ; Dacheng Tao ; Xuelong Li ; Jie Yang

Spectral analysis-based dimensionality reduction algorithms are important and have been popularly applied in data mining and computer vision applications. To date many algorithms have been developed, e.g., principal component analysis, locally linear embedding, Laplacian eigenmaps, and local tangent space alignment. All of these algorithms have been designed intuitively and pragmatically, i.e., on the basis of the experience and knowledge of experts for their own purposes. Therefore, it will be more informative to provide a systematic framework for understanding the common properties and intrinsic difference in different algorithms. In this paper, we propose such a framework, named "patch alignment,rdquo which consists of two stages: part optimization and whole alignment. The framework reveals that (1) algorithms are intrinsically different in the patch optimization stage and (2) all algorithms share an almost identical whole alignment stage. As an application of this framework, we develop a new dimensionality reduction algorithm, termed discriminative locality alignment (DLA), by imposing discriminative information in the part optimization stage. DLA can (1) attack the distribution nonlinearity of measurements; (2) preserve the discriminative ability; and (3) avoid the small-sample-size problem. Thorough empirical studies demonstrate the effectiveness of DLA compared with representative dimensionality reduction algorithms.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 9 )

Date of Publication:

Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.