Cart (Loading....) | Create Account
Close category search window
 

Manual Detection of Spatial and Temporal Torque Variation through a Rotary Switch

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tan, H.Z. ; Purdue Univ., West Lafayette, IN ; Shuo Yang ; Pizlo, Z. ; Buttolo, P.
more authors

We report three experiments on manual detection of torque variations experienced through a rotary switch. The experiments were designed to investigate whether torque perception was determined by the spatial or by the temporal characteristics of the rotary switch. In Exp. I, manual detection thresholds of torque variation were measured with raised sinusoidal torque profiles that varied in spatial period from 2.8deg to 180deg per cycle. In Exp. II, the same was measured for torque profiles that varied in temporal frequency from 2 to 300 Hz. Exp. III was similar to Exp. 1 except that the participants were required to turn the rotary switch at two different speeds for each of seven spatially specified torque profiles (spatial period: 2.8deg to 90deg per cycle). A comparison of the thresholds obtained in Exp. III and those in Exps. I and II suggests that the detection of torque variations depends on the spatial, not temporal, specification of the torque profiles. Our results can potentially shed new light on the design and engineering specification of rotary switches.

Published in:

Haptics, IEEE Transactions on  (Volume:1 ,  Issue: 2 )

Date of Publication:

July-Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.