By Topic

A Compute Unified System Architecture for Graphics Clusters Incorporating Data Locality

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Muller, C. ; Visualisierungsinstitut, Univ. Stuttgart, Stuttgart ; Frey, S. ; Strengert, M. ; Dachsbacher, C.
more authors

We present a development environment for distributed GPU computing targeted for multi-GPU systems, as well as graphics clusters. Our system is based on CUDA and logically extends its parallel programming model for graphics processors to higher levels of parallelism, namely, the PCI bus and network interconnects. While the extended API mimics the full function set of current graphics hardware-including the concept of global memory-on all distribution layers, the underlying communication mechanisms are handled transparently for the application developer. To allow for high scalability, in particular for network-interconnected environments, we introduce an automatic GPU-accelerated scheduling mechanism that is aware of data locality. This way, the overall amount of transmitted data can be heavily reduced, which leads to better GPU utilization and faster execution. We evaluate the performance and scalability of our system for bus and especially network-level parallelism on typical multi-GPU systems and graphics clusters.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:15 ,  Issue: 4 )