Cart (Loading....) | Create Account
Close category search window
 

FTPA: Supporting Fault-Tolerant Parallel Computing through Parallel Recomputing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xuejun Yang ; Nat. Univ. of Defense Technol., Changsha, China ; Yunfei Du ; Panfeng Wang ; Hongyi Fu
more authors

As the size of large-scale computer systems increases, their mean-time-between-failures are becoming significantly shorter than the execution time of many current scientific applications. To complete the execution of scientific applications, they must tolerate hardware failures. Conventional rollback-recovery protocols redo the computation of the crashed process since the last checkpoint on a single processor. As a result, the recovery time of all protocols is no less than the time between the last checkpoint and the crash. In this paper, we propose a new application-level fault-tolerant approach for parallel applications called the fault-tolerant parallel algorithm (FTPA), which provides fast self-recovery. When fail-stop failures occur and are detected, all surviving processes recompute the workload of failed processes in parallel. FTPA, however, requires the user to be involved in fault tolerance. In order to ease the FTPA implementation, we developed get it fault-tolerant (GiFT), a source-to-source precompiler tool to automate the FTPA implementation. We evaluate the performance of FTPA with parallel matrix multiplication and five kernels of NAS Parallel Benchmarks on a cluster system with 1,024 CPUs. The experimental results show that the performance of FTPA is better than the performance of the traditional checkpointing approach.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:20 ,  Issue: 10 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.