Cart (Loading....) | Create Account
Close category search window
 

60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Weiss, M. ; Univ. Duisburg-Essen, Duisburg ; Huchard, M. ; Stohr, A. ; Charbonnier, B.
more authors

In this paper, a 60-GHz photonic millimeter-wave link system for short- to medium-range broadband wireless data transmission is investigated. The system employs advanced mm-wave photonic components and radio-over-fiber (RoF) techniques for the generation of a DSB-SC optical mm-wave carrier and its subsequent on-off-keying modulation and transmission. For short-range applications, we have constructed a compact wireless RoF transmitter consisting of a high-frequency photodiode and a mm-wave antenna only. This system achieved error-free (BER=10-9, 231-1 PRBS, NRZ) in-door transmission of 12.5-Gb/s signals over wireless distances up to 3.1 m with a receiver sensitivity as low as - 45.4 dBm . For fixed wireless access (FWA) requiring a bit error rate of 10-4, the maximum transmission distance for 12.5 Gb/s is increased up to 5.8 m. For medium-range broadband wireless transmission an electrical radio-frequency (RF) amplifier was employed in the RoF transmitter. Here we achieved 7.5-Gb/s error-free transmission in out-door line-of-sight experiments over wireless distances of up to 36 m. Based upon the experimental results, we expect that the maximum wireless distance the system could accommodate for 12.5 Gb/s is in the kilometer range when using high-gain antennas and an RF transmitter amplifier with a sufficient bandwidth.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 15 )

Date of Publication:

Aug.1, 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.