Cart (Loading....) | Create Account
Close category search window
 

Reconfigurable RF-Waveform Generation Based on Incoherent-Filter Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Torres, V. ; Dept. de Fis., Univ. Jaume I, Castellon de la Plana ; Lancis, J. ; Andres, P. ; Chen, L.R.

Radio-frequency (RF) waveform generators are key devices for a variety of applications, including radar, ultra-wideband communications, and electronic test measurements. Following advances in broadband coherent pulsed sources and pulse-shaping technologies, reconfigurable RF waveform generators operating at bandwidths >1 GHz have become a reality. In this work, we demonstrate reconfigurable RF waveform generation using broadband spectrally incoherent optical sources. This is achieved in two steps. First, we implement an RF incoherent filter. The energy spectrum of the optical source is conveniently apodized using a commercially available computer-controlled D-WDM channel selector with 100-GHz resolution. The channel controller provides high flexibility for shaping the optical source energy spectrum and, hence, high reconfigurability capabilities in terms of the RF filter. Second, we show that by applying a short baseband electrical waveform to the input of the RF filter, the output RF spectrum of the electrical signal is a mapped version of the designed RF filter transfer function. Specifically, we illustrate the capabilities of our technique by generating RF signals with ~ 10 GHz bandwidth and tunable repetition rate. Finally, we discuss how this method can be scaled up to the millimeter-wave range with current technology.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 15 )

Date of Publication:

Aug.1, 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.