By Topic

Simultaneous Generation of Centralized Lightwaves and Double/Single Sideband Optical Millimeter-Wave Requiring Only Low-Frequency Local Oscillator Signals for Radio-Over-Fiber Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ming-Fang Huang ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA ; Jianjun Yu ; Zhensheng Jia ; Gee Kung Chang

We have designed and experimentally demonstrated radio-over-fiber (ROF) systems to simultaneously generate optical millimeter-wave (mm-wave) and centralized lightwaves using one low-bandwidth intensity modulator (IM) with low-frequency local oscillator (LO) signals while simplifying the transmission design and reducing the cost of the base station (BS). The techniques based on double-sideband (DSB) and single-sideband (SSB) signals for ROF systems are discussed in detail in terms of architecture efficiency, bandwidth requirement, and fiber transmission performance. The repetitive frequency of the optical mm-wave carriers are four times of that of the LO in central office (CO) by using DSB scheme. Full-duplex transmission services have been successfully realized over 20-km single-mode fiber (SMF) based on wavelength-reuse technique. In order to mitigate chromatic dispersion, the SSB technique has also been investigated in this paper. We had realized an ROF system that attained dispersion-free transmission and a negative power penalty by using SSB generation. We also quantified the optical carrier-to-sideband ratio (CSR) of downstream transmission in this ROF link and established that the performance of ROF system can be significantly improved when the optical signals are transmitted at a CSR value of 0 dB. The proposed architectures require much less bandwidth of the modulators, receiver sensitivity, system operation efficiency, and reliability.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 15 )