By Topic

Phase-Modulated Microwave-Photonic Link With Optical-Phase-Locked-Loop Enhanced Interferometric Phase Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jinye Zhang ; Dept. of Electr. & Comput. Eng., Univ. of Victoria, Victoria, BC, Canada ; Hone, A.N. ; Darcie, T.E.

We demonstrate a novel approach for coherently detecting microwave-modulated optical phase through interferometric phase detection and an optical phase-locked loop (OPLL). An asymmetric interferometer converts phase modulation into intensity modulation for direct detection. The optical phase in the interferometer is modulated by the detected signal through an OPLL. Balanced detection is achieved by biasing the interferometer at its quadrature point to cancel common-mode intensity noise and even-order nonlinear distortions. The concept was validated experimentally at a frequency of 25.7 MHz, limited by the large loop delay associated with discrete optical components. A numerical simulation is used to project system operation beyond the limitations of the experiment, showing that the linearity performance of the interferometric phase detector may be significantly improved by signal feedback.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 15 )