By Topic

Transmission Characteristics of 120-GHz-Band Wireless Link Using Radio-on-Fiber Technologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Akihiko Hirata ; NTT Microsyst. Integration Labs., NTT Corp., Atsugi ; Hiroyuki Takahashi ; Ryoichi Yamaguchi ; Toshihiko Kosugi
more authors

The transmission characteristics of a 120-GHz-band millimeter-wave wireless link are described. The wireless link uses photonic technologies for generation, modulation, and transmission of millimeter-wave signals. This configuration enables set up of the photonic millimeter-wave generator and transmitter core separately; therefore, the wireless link can be used as a kind of radio-over-fiber system. The effects of transmitting 120-GHz-band optical subcarrier signals through single-mode fibers were theoretically and experimentally investigated. It was confirmed that the time shift of the code edges, because of chromatic dispersion, limits the transmission distance. A data stream at 10-Gbit/s was successfully transmitted over the 120-GHz-band millimeter-wave wireless link, with a bit error rate (BER) below 10-12 over a distance of 250 m. The results also demonstrated the stability of the wireless link, which satisfied the 10-Gb Ethernet standard under clear weather conditions.

Published in:

Journal of Lightwave Technology  (Volume:26 ,  Issue: 15 )